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Decision-makers, scientists anticipate 
biodiversity change
Goals
Expand access to data and effective modeling
Automate real-time prediction

Approach
• Cloud-based predictors (climate, soils, remotely sensing), 

biodiversity responses (plants, birds, mammals, arthropods)
• Interactive interface
• Generalized joint attribute modeling (GJAM) analyzes 

community at multiple scales combined with food
• Predictive distributions/sensitivity, entire community response



Current models provide limited guidance

• Species distribution models (SDMs), species richness 
models (SRMs):
– anywhere from 0 to 50% of species at risk  (Urban et al. 

Science 2015)
– recent meta-analysis: 8% 

• Scale mismatch: fit at one scale, predict at another 
– SDMs: Independent models for each species
– SRMs: only the number of species
– ’Simpson’s Paradox’, the ‘ecological fallacy’ (Clark et al. 

2011)



Scale paradox

Clark, et al. Global Change Biol (2014)
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What’s hard about community response?

• Data are:
– Multivariate

– Multifarious

– Median-zero

• Models are:
– Individual species

– Limited to one species group or to presence-absence

– Zero-inflated; non-linear link functions

Clark et al. 2014, Ecol Appl
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Multifarious observations

Discrete abundance: counts

Continuous abundance: biomass, concentration

Count composition: microbiome, paleoecology

Fractional composition: satellite imagery, photoplots

Ordinal scores: health status, phenological state

Categorical: plot status, traits

Clark et al. Ecol Monogr (2017)



Median-zero

zero
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Endophyte microbiome Biomass on FIA plots

Ghosh, Gelfand, Zhu, Clark, Biometrika 2014

Discrete zero, 
continuous biomass

Zero-inflated models don’t handle many zeros



Diverse data: National Ecological 

Observatory Network (NEON)

• Thousands of plots

– Ground beetles 

– Small mammals

– Mosquitos 

– Ticks

– Plants

– Birds

• Hyperspectral and 

LiDAR data

https://www.neonscience.org/field-sites/field-sites-map



Diverse data: NEON

• Ground beetles – pitfall traps; counts

• Plant cover abundance—percent, censored at 0.5%

• Small mammals—live traps; counts

• Birds—point counts



Taxonomically distant species groups in NEON

• Sampling effort/scale varies by group



Diverse data: Breeding Bird Survey (BBS) and 
eBird

 Citizen science data

 Sampling effort available

 Sparse response (99.9% zeros)



Diverse data: US Forest Inventory 
Analysis (FIA) Data

• 151,355 locations

• Millions of trees 

• Plots re-censused every 5-10 years



Generalized joint attribute modeling—GJAM 

• All species jointly
– Direct effects (main effects and interactions)

– Indirect effects of species on one another

• On the observation scale (n0 non-linear transformations)

• Massive zeros

• Generative: 
– predict communities given environment

– inversely, environment given community (i.e. fingerprinting)

moisture

species s
competitor

pathogen

Clark et al, Ecol Monogr 2017



Standard approach (e.g., glm,…)

X Y|X

Predictors
Species data,

Continuous or 
non-linear link



gjam idea

W|XX Y|W
Continuous,

joint
Species data,
Any data type

No nonlinear link

Predictors

Responses and 
species 

relationships 
through covariance

Interpret the data 
scale



Role of prediction
• Generative model 

– Predict the fitted data?
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Role of prediction
• Generative model 

– Predict the fitted data?

• Parameter estimation

– Sensitivity

• Inverse prediction
– Environmental fingerprint

• Location fingerprint
– Location uniquely determines 

community?
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Dimension reduction

• 102 species means 104 parameters

Taylor-Rodriguez, Gelfand, Clark, Bayesian Analysis, 2017



Continuous (CON)
Discrete abundance (DA)
Continuous abundance (CON)
Presence-absence (PA)
Composition count (CC)
Ordinal count (OC)Clark et al. Ecol Monogr 2017

Parameter recovery in simulation

Combine all data types



• Generative for community
– Model-based sensitivity, uncertainty

• Combine data types; uneven effort

• High-dimensional (1000 species/OTUs)
– Model-based aggregation

• Estimates on the observation scale (no non-linear link)

• Accurate prediction
– Forward: X →Y
– Inverse: X ←Y
– Map fingerprint: L ← X ←Y

Why is GJAM model-based?



GJAM for the joint community

• Application at NEON

– Which species are sensitive?

– Environment and location fingerprints

– Community change
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Tutorials for data acquisition in GEE

• Environmental and 

remote sensing data

• Simple inputs: 

– dataset 

– metric of interest 

– temporal/spatial 

averaging



Automated workflows 
download/preprocess

• Geospatial climate, landscape variables

– Climate: precipitation, PET, temperature, water deficit, 

VPD

– Topography: slope, elevation, aspect

– Soils: available water storage, % sand, % clay, … 

– Land cover

• Remote sensing

– MODIS: LST, ET, GPP, LAI, EVI/NDVI, phenology

– SMOS: soil moisture

– Landsat: vegetation and water indices

– Lidar



• Processing with GEE python API cloud-computing 

platform

– Efficient pre-processing (e.g., filtering with QC 

bands from MODIS, Landsat products) 

– Temporal averaging: months, seasons, years

– Spatial averaging: points, plots/grids, points with 

buffers 

point plot Buffer from point

Cloud Computing



Lidar: habitat structure

• Data processed for 2017, ~3,000 plots, 39 sites

• Habitat structure metrics
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Plot HARV34: 
relief ratio: 0.52
max height: 29.5
mean height: 15.2 + 9.5

Plot HARV36: 
0.76
29.1
22.4 + 6.5



Precision prediction: one distribution for all 
species

Ground beetle pitfall
Plant cover plot
rodent live trap

• Taxonomically 
diverse species 
groups
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The community ‘fingerprints’ its 
environment…

• xx

Observed
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Species at risk with +2°C

Plants
Ground beetles
Mammals

Clark et al. 2017, Ecol Monogr

• The value of a generative model-based



Communities defined by response to the 
environment

• left: communities 
defined by response

Clark et al. 2017, Ecol Monogr
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Communities defined by response to the 
environment

• left: communities 
defined by 
response

• right: species by 
environment 
responses

Clark et al. 2017, Ecol Monogr
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Community-wide effects

Predictor
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Clark et al. 2017, Ecol Monogr



Environment defined by effect on community

• left: predictors 
defined by effect

Clark et al. 2017, Ecol Monogr

Community effect
Predictors Species response



Environment defined by effect on community

• left: predictors 
defined by effect

• right: species by 
environment 
responses

Clark et al. 2017, Ecol Monogr

Community effect
Predictors Species response



Location fingerprint
the community knows its location

Arrows point from 
true sample 
location to 
predicted sample 
location



+2°C: Community reorganization

• Current climate



+2°C: Community reorganization

• Change mean 
and variance of 
all climate 
variables, 
mediated by 
habitat



• Biodiversity predictions emphasize climate/edaphic

• Challenge:

The missing component: food

Camera trapping large mammals

- Mean benefit/variance cost
- Scale-dependence: each consumer in its own way



Scale-dependent variance in resources

In time In space

Diet breadth



NSF-funded MASTIF: Mast inference and forecasting

Google Earth Engine Long-Term Plots

Mean benefit vs. variance cost of resources: scale-
dependence, diet breadth

Climate variables

Habitat

Tree Characteristics

Seed Rain

Seed 
Rain

= Effort Fecundity Dispersal

Source detection: fecundity of each tree:

Habitat-specific mean vs variance at all scales:

Resource Score = Variance

x x

/x Nutritional 
Quality

Mean Seed Rain



MASTIF: translate individual fecundity to 

habitat resource value

• Nutritional database of consumer, site-specific 
resource scores

• Use estimates of fecundity and dispersal to expand 
inference to FIA

Resource Score
=

Variance
/x Nutritional 

Quality
Mean Seed Rain



Efficient to add new datasets

• Biodiversity data

– NEON: bird counts, pathogen status of ticks, mammals

– NSF funding: mast availability and large vertebrates

– FIA

– eBird/BBS

– Scripts/tutorials on GitHub/CRAN for user data

• Environmental, habitat, remote sensing

– Incorporating Lidar from NEON

– Integrating additional datasets with GEE

– Download/pre-process from NASA’s DAACs for remote 
sensing data not available on GEE



Web-based predictions 
http://www.pbgjam.org/

• Location-based

• Species or species group

• Question-driven

• Explanation-the important variables contributing to 
change

http://www.pbgjam.org/


Fully open-source, algorithm documentation

• Fully open-source on CRAN

• Distribution theory in primary literature

• Algorithm documentation Rmarkdown
vignettes, R help pages

• GJAM on cran: http://rpubs.com/jimclark/234762

– Installed > 16,000 times

• MASTIF built, ready for cran: 
http://rpubs.com/jimclark/281413

http://rpubs.com/jimclark/234762
http://rpubs.com/jimclark/281413


Project Schedule

Data assimilation
Biodiversity

Remote sensing/ environment/ habitat
Additional remote sensing datasets 

GJAM inference and prediction
Birds

Plants, beetles, & small mammals
Trees

Develop web-based PB-GJAM
Set up virtual machine

Organize outputs in geodatabase
Create web-based tool interface

Develop researchers version PB-GJAM
Tutorials: Preprocessing data in GEE

Tutorials: Inference & prediction GJAM
Tutorials: MASTIF

Tutorials: Time-series version GJAM 

Completed In-progress To be completed

Year 1 Year 2
Q1     Q2     Q3     Q4     Q5     Q6     Q7     Q8
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